ПAMIBIA UПIVERSITY
OF SCIEחCE AחD TECHחOLOGY

FACULTY OF ENGINEERING

InSTEM

QUALIFICATION: INTRODUCTION TO SCIENCE, TECHNOLOGY, ENGINEERING AND MATHEMATICS		
QUALIFICATION CODE: O4STEM	LEVEL: 4	
COURSE CODE: IPH4O2S	COURSE NAME: INTRODUCTION TO PHYSICS B	
SESSION: \quad NOVEMBER 2022	PAPER: \quad N/A	
DURATION: 3 HOURS	MARKS: 100	

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER(S)	Ms Ilana Malan Ms Oksana Kachepa
MODERATOR:	Mr Anthony Apata

INSTRUCTIONS

1. Answer all questions.
2. Write all the answers in ink.
3. No books, notes, correction fluid (Tippex) or cell phones allowed.
4. Pocket calculators are allowed.
5. You are not allowed to borrow or lend any equipment or stationary.
6. All FINALANSWERS must be rounded off to THREE DECIMAL PLACES.
7. All CONSTANT VALUES and FORMULAS on page 9.

SECTION A - TOTAL MARKS 30

This section consists of ten (10) questions. Choose the correct answer and clearly indicate your answer on your answer sheet. Answer all the questions.

QUESTION 1

What is the difference between a transvers wave and a longitudinal wave?
(a) medium particles do not vibrate in the same direction
(b) sound waves are transverse waves
(c) all EM radiation are examples of longitudinal waves
(d) only longitudinal waves are progressive eaves

QUESTION 2

What is the effective capacitance of the combination of capacitors shown in Figure 1?

Figure 1
(a) $18 \mu \mathrm{~F}$
(b) $0.833 \mu \mathrm{~F}$
(c) $5 \mu \mathrm{~F}$
(d) $\quad 1.515 \mu \mathrm{~F}$

QUESTION 3

A copper wire of cross-sectional area $2 \mathrm{~mm}^{2}$ carries a current of 10 A . How many electrons pass through the wire in half an hour?
(a) 6.25×10^{19}
(b) $\quad 1.13 \times 10^{23}$
(c) 2.88×10^{-15}
(d) 18000

QUESTION 4

[2]

Choose the correct statement:
(a) there is a slight delay in the flow of electric current as soon as the switch is closed
(b) charged particles in electrolytes include electrons
(c) current can be seen as the flow of protons
(d) only electrons carry the elementary charge

QUESTION 5

Four cells, each with an emf of 2 V and an internal resistance of 0.2Ω are connected in parallel to each other and to one an external resistor of 2Ω. Calculate the total current.
(a) $\frac{40}{41} \mathrm{~A}$
(b) $\frac{41}{40} \mathrm{~A}$
(c) $\quad \frac{5}{7} \mathrm{~A}$
(d) $\frac{20}{7} \mathrm{~A}$

QUESTION 6

Choose the correct statement:
(a) the right hand grip rule is used to determine current in a straight wire
(b) the right hand rule is used to determine current in a straight wire
(c) the right hand grip rule determines the magnetic field around a straight conductor
(d) the right hand rule determines the magnetic field around a straight conductor

QUESTION 7

A 98.1 N piece of iron has an apparent mass of 9.0094 kg when submerged in an unknown liquid. What is the name of the liquid?
(a) water
(b) alcohol
(c) oil
(d) seawater

QUESTION 8

A fast-moving fire truck emits an 880 Hz siren. The pitch heard by a stationary observer, changes by 56 Hz . The observed frequency while the truck is receding is:
(a) 880 Hz
(b) 56 Hz
(c) $\quad 936 \mathrm{~Hz}$
(d) 824 Hz

QUESTION 9
A step- down transformer has a turns ratio of 12:4. When an alternating pd of 0.3 kV is connected to the primary coil, a current of 30 mA flows in it. Determine the current in the secondary coil if the percentage power loss in the transformer is 10%.
(a) 81 mA
(b) $\quad 90 \mathrm{~mA}$
(c) 0.9 mA
(d) 27 mA

QUESTION 10

A decay graph does not have a straight line because:
(a) the same number of particles decay with every half life
(b) the sample size decrease with the same amount every half life
(c) the portion of undecayed particles decrease after every decay period
(d) the half-life does not remain the same throughout the decay process

SECTION B - TOTAL MARKS 70

This Section consists of six (6) questions. Answer ALL the questions.
QUESTION 11
11.1 Answer questions 11.1.1 to 11.1.3 with regards to Figure 2.

Figure 2
11.1.1 What effect is depicted in Figure 2?
11.1.2 Will the observer in Figure $\mathbf{2}$ hear a lower or higher frequency? Give a reason for your answer.
11.1.3 Determine the speed with which the source is moving if the observer hears the frequencies 800 Hz and 900 Hz .
11.2 Determine the speed of the wave from Figure 3.

Figure 3
12.1 In which case(s) of objects placed in a fluid will $\mathrm{V}_{\text {object }}=\mathrm{V}_{\text {displaced }}$? Explain.
12.2 State two characteristics of an ideal fluid.
12.3 A piece of dolomite rock with a density of $2.9 \mathrm{~g} / \mathrm{cm}^{3}$ is placed in a graduated cylinder filled with seawater, see Figure 4. The level of the seawater rises to 68 ml . Determine the apparent mass of the stone in the seawater.

Figure 4
12.4 The cylinder in Figure 4 is emptied, the rock is removed and then filled with alcohol using a plastic tube with a very small diameter. If it takes 2 minutes and 37 seconds to fill to the halfway mark, what is the mass flow rate?
12.5 At what velocity does the alcohol flow with the tube having a diameter of 3 mm . (2)

QUESTION 13

13.1 Discuss what you understand with the emf voltage measured in a circuit and electrical energy.
13.2 Define electrical power.
13.3 Determine currents $\mathrm{I}_{18}, \mathrm{I}_{12}$ and I_{36} in Figure 5 using Kirchhoff's laws.

Figure 5
13.4 How do the plates of the capacitor become positive and negatively charged?
13.5 Calculate the total charge stored on two capacitors connected in parallel. The two capacitors are $70 \mu \mathrm{~F}$ and $120 \mu \mathrm{~F}$ and are connected to a 20 V supply.

QUESTION 14

14.1 How would you use the right-hand grip rule?
14.2 What will happen in a piece of metal wire that is moved perpendicular to a magnetic field?
14.3 How is it possible for current to flow in the secondary coil of a transformer without any physical connection to the primary coil?
14.4 Answer questions 14.4 .1 to 14.4 .3 with reference to Figure 6.

Figure 6
14.4.1 Is this a step-up or step-down transformer? Give a reason for your answer.
14.4.2 Input voltage $=220 \mathrm{~V}$. The turns on the two coils are 2800 and 700. Determine V_{s}.
14.4.3 With the resistor $=660 \Omega$ and the efficiency of the transformer 78%, determine the current in the primary coil.
15.1 Distinguish between the terms nucleon and nuclide.
15.2 Why do the alpha and beta particles have such different masses?
15.3 After 966 days 99.21875 \% of a sample of a radioactive element has undergone decay. Use a decay table to determine the number of half-lives and the time for one half life. Identify the element from the constants on page 9.

QUESTION 16
[8]
16.1 What is a photon?
16.2 Briefly describe the photo electric effect.
16.3 When radiation with wavelength 440 nm is used during the photo electric effect, electrons with a velocity of $1.6 \times 10^{5} \mathrm{~m} / \mathrm{s}$ is observed. Identify the material looking at the work functions on page 9.

LIST OF CONSTANTS:

$\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$
density of water $=1000 \mathrm{~kg} / \mathrm{m}^{3}$
speed of sound in the air $=340 \mathrm{~m} / \mathrm{s}$
speed of light in vacuum $=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
mass of electron $=9.1 \times 10^{-31} \mathrm{~kg}$
density of iron $=7874 \mathrm{~kg} / \mathrm{m}^{3}$
density of seawater $=1023 \mathrm{~kg} / \mathrm{m}^{3}$
$1 \mathrm{ml}=1 \mathrm{~cm}^{3}$

Radioactive element	Half life (days)
Cadmium	463
Cobalt-57	271
Cecium	138

Material	Work function (eV)
Sodium	2.75
Zinc	4.3
Potassium	2

List of equations

$v=f \lambda$
$P=\frac{F}{A}$
$P=\rho g h$
$F_{B}=W_{f}$
$\rho=\frac{m}{V}$
$A_{1} v_{1}=A_{2} v_{2}$
$Q=\frac{I}{t}$
$f_{o}=f\left(\frac{v \pm u}{v}\right)$
$f_{o}=f\left(\frac{v}{v \pm u}\right)$
$e m f=\left(I_{T} R_{T}\right)+\left(I_{T} r_{T}\right)$
$R=\rho \frac{A}{L}$
$C=\frac{Q}{V}$
power $_{p}=$ power $_{s}$
$E=h f=\phi+K E \quad N_{p}: N_{s}=V_{p}: V_{s}$

$$
\begin{aligned}
& \text { N } \\
& \frac{\text { s }}{5} \\
& \frac{3}{5} \\
& \frac{5}{5}
\end{aligned}
$$

